Showing posts with label llama2. Show all posts
Showing posts with label llama2. Show all posts

Thursday, February 1, 2024

Ollama - Part4 - Vision assistant using LLaVA

In this exercise we will interact with LLaVA which is an end-to-end trained large multimodal model and vision assistant. We will use the Ollama REST API to prompt the model using Python.

Full project in my GitHub

https://github.com/vineethac/Ollama/tree/main/ollama_vision_assistant


LLaVA, being a large multimodal model and vision assistant, can be utilized for various tasks. Here are a couple of use cases:

  • Image Description Generation

Input: Provide LLaVA with an image.
Use Case: LLaVA can generate descriptive text or captions for the content of the image. This is particularly useful for automating image cataloging or enhancing accessibility for visually impaired users.

  • Question-Answering on Text and Image

Input: Ask LLaVA a question related to a given text or show it an image.
Use Case: LLaVA can comprehend the context and provide relevant answers. For instance, you could ask about details in a picture or seek information from a paragraph, and LLaVA will attempt to answer accordingly.

These are just a few examples, and the versatility of LLaVA allows for exploration across a wide range of multimodal tasks and applications.

Sample interaction with LLaVA model


Image


Image credits: shutterstock

Prompt

python3 query_image.py --path=images/img1.jpg --prompt="describe the picture 
and what are the essentials that one need to carry generally while going these 
kind of places?"

Response
{
    "model": "llava",
    "created_at": "2024-01-23T17:41:27.771729767Z",
    "response": " The image shows a man riding his bicycle on a country road, surrounded by 
    beautiful scenery and mountains. He appears to be enjoying the ride as he navigates 
    through the countryside. \n\nWhile cycling in such environments, an essential item one 
    would need to carry is a water bottle or hydration pack, to ensure they stay well-hydrated 
    during the journey. In addition, it's important to have a map or GPS device to navigate 
    through potentially less familiar routes and avoid getting lost. Other useful items for 
    cyclists may include a multi-tool, first aid kit, bike lock, snacks, spare clothes, 
    and a small portable camping stove if planning an overnight stay in the wilderness.",

Hope it was useful. Cheers!

Friday, January 26, 2024

Ollama - Part3 - Web UI for Ollama to interact with LLMs

In the previous blog posts, we covered the deployment of Ollama on Kubernetes cluster and demonstrated how to prompt the Language Models (LLMs) using LangChain and Python. Now we will delve into deploying a web user interface (UI) for Ollama on a Kubernetes cluster. This will provide a ChatGPT like experience when engaging with the LLMs.

Full project in my GitHub

https://github.com/vineethac/Ollama/tree/main/ollama_webui


The above referenced GitHub repository details all the necessary steps required to deploy the Ollama web UI. The Following diagram outlines the various components and services that interact with each other as part of this entire system:


For detailed information on deploying Prometheus, Grafana, and Loki on a Kubernetes cluster, please refer this blog post.

A sample interaction with the mistral model using the web UI is given below.


Hope it was useful. Cheers!

Monday, January 15, 2024

Ollama - Part1 - Deploy Ollama on Kubernetes

Docker published GenAI stack around Oct 2023 which consists of large language models (LLMs) from Ollama, vector and graph databases from Neo4j, and the LangChain framework. These utilities can help developers with the resources they need to kick-start creating new applications using generative AI. Ollama can be used to deploy and run LLMs locally. In this exercise we will deploy Ollama to a Kubernetes cluster and prompt it.

In my case I am using a Tanzu Kubernetes Cluster (TKC) running on vSphere with Tanzu 7u3 platform powered by Dell PowerEdge R640 servers. The TKC nodes are using best-effort-2xlarge vmclass with 8 CPU and 64Gi Memory.  Note that I am running it on a regular Kubernetes cluster without GPU. If you have GPU, additional configuration steps might be required.



Hope it was useful. Cheers!