Tuesday, February 20, 2024

Hugging Face - Part2 - Code generation with Code Llama - Instruct

Code Llama, an impressive publicly available machine learning model, is a specialised version of Llama 2 that was created by further training Llama 2 on code-specific datasets. It is specifically designed to tackle coding challenges. It can generate both code and descriptive natural language about code, making it a versatile asset for developers. Some common use cases include writing new functions or even debugging existing code. It supports a wide range of popular programming languages, including Python, C++, Java, PHP, Typescript (Javascript), C#, and Bash.

Code Llama – Instruct, an advanced variation of Code Llama which is designed to accept natural language instructions as input and returns the expected output. This unique feature makes the model more adept at understanding and fulfilling user requirements. The Meta AI team recommend using Code Llama - Instruct variants whenever you intend to use Code Llama for your code generation tasks.



In this blog post, I will guide you through the process of employing the Code Llama - Instruct model from Hugging Face locally for code generation tasks. We will be utilizing the Python Transformers library for this. You can access the Python script in my GitHub repository:

https://github.com/vineethac/huggingface/tree/main/3-codellama-instruct

Example

root@hf-5:/# python3 codellama_prompt.py
tokenizer_config.json: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 749/749 [00:00<00:00, 3.44MB/s]
tokenizer.model: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 500k/500k [00:00<00:00, 4.12MB/s]
tokenizer.json: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1.84M/1.84M [00:00<00:00, 9.76MB/s]
special_tokens_map.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 411/411 [00:00<00:00, 2.08MB/s]
config.json: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 646/646 [00:00<00:00, 3.51MB/s]
model.safetensors.index.json: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25.1k/25.1k [00:00<00:00, 47.9MB/s]
model-00001-of-00002.safetensors: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 9.98G/9.98G [02:02<00:00, 81.2MB/s]
model-00002-of-00002.safetensors: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3.50G/3.50G [00:45<00:00, 76.7MB/s]
Downloading shards: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [02:48<00:00, 84.38s/it]
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:20<00:00, 10.10s/it]
generation_config.json: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 116/116 [00:00<00:00, 444kB/s]


Ask codellama/CodeLlama-7b-Instruct-hf: reverse a list in python.
Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.
Result: <s>[INST] reverse a list in python. [/INST]  There are several ways to reverse a list in Python. Here are a few methods:

1. Using the `reversed()` function:

my_list = [1, 2, 3, 4, 5]
reversed_list = list(reversed(my_list))
print(reversed_list)  # [5, 4, 3, 2, 1]

2. Using slicing:

my_list = [1, 2, 3, 4, 5]
reversed_list = my_list[::-1]
print(reversed_list)  # [5, 4, 3, 2, 1]

3. Using the `reverse()` method:

my_list = [1, 2, 3, 4, 5]
my_list.reverse()
print(my_list)  # [5, 4, 3, 2, 1]

Note that the `reverse()` method reverses the list in place, meaning that it modifies the original list. The other two methods create a new list with the elements in reverse order.

Ask codellama/CodeLlama-7b-Instruct-hf: /bye
root@hf-5:/#

The first time you execute the Python script, the model will be automatically downloaded to your local machine. Subsequently, upon subsequent runs, the previously saved model will be utilized in processing user inputs.

root@hf-5:~# cd ~/.cache/huggingface/hub/
root@hf-5:~/.cache/huggingface/hub#
root@hf-5:~/.cache/huggingface/hub# ls | grep Instruct
models--codellama--CodeLlama-7b-Instruct-hf
root@hf-5:~/.cache/huggingface/hub#
root@hf-5:~/.cache/huggingface/hub# cd models--codellama--CodeLlama-7b-Instruct-hf
root@hf-5:~/.cache/huggingface/hub/models--codellama--CodeLlama-7b-Instruct-hf# ls
blobs  refs  snapshots
root@hf-5:~/.cache/huggingface/hub/models--codellama--CodeLlama-7b-Instruct-hf# cd blobs/
root@hf-5:~/.cache/huggingface/hub/models--codellama--CodeLlama-7b-Instruct-hf/blobs#
root@hf-5:~/.cache/huggingface/hub/models--codellama--CodeLlama-7b-Instruct-hf/blobs# ls -altrh
total 13G
-rw-r--r-- 1 root root  749 Feb 19 12:03 526f464cf83353c59f7c07b9e587498b47d67a1b
-rw-r--r-- 1 root root 489K Feb 19 12:03 45ccb9c8b6b561889acea59191d66986d314e7cbd6a78abc6e49b139ca91c1e6
-rw-r--r-- 1 root root 1.8M Feb 19 12:03 6b25321d89e21832a89e6273834eab0e4378a53b
-rw-r--r-- 1 root root  411 Feb 19 12:03 d85ba6cb6820b01226ef8bd40b46bb489041c6a8
-rw-r--r-- 1 root root  646 Feb 19 12:03 8fb4018bc8ceaddbaf7d3d238911a30fd5e9081a
-rw-r--r-- 1 root root  25K Feb 19 12:03 cd3b8fb46c4d5616e91520a7a7d9a5a75af759a8
-rw-r--r-- 1 root root 9.3G Feb 19 12:05 0f52c0eab2dafa0a13e8103a426b17137f7b053e9211334158d7bd7cc1148ceb
-rw-r--r-- 1 root root 3.3G Feb 19 12:06 9ddab1824225fbe405cea67c5d8d87666f1ab5c59ec89abdf2cacae9b555da75
-rw-r--r-- 1 root root  116 Feb 19 12:06 aa9aac2cbaa80cf25094e7d9a527bd1cab9f5321
drwxr-xr-x 6 root root 4.0K Feb 19 12:06 ..
drwxr-xr-x 2 root root 4.0K Feb 19 12:06 .
root@hf-5:~/.cache/huggingface/hub/models--codellama--CodeLlama-7b-Instruct-hf/blobs#

I hope it was useful. Cheers!

Monday, February 19, 2024

Hugging Face - Part1 - Getting started

This blog series will help you get started with Hugging Face, including:

  • Downloading and using Hugging Face models locally via the Python Transformers library.
  • Constructing an API for your LLM application using FastAPI.
  • Containerizing your project with Docker.
  • Deploying and running your containerized LLM application on a Kubernetes cluster.


An overview about Hugging Face, types of Language Models, and the Transformers library are given in my GitHub repo: https://github.com/vineethac/huggingface/tree/main

Here are some examples of running the language models locally from Hugging Face using Pipeline function from the Transformers library:

question-answering

Model used: distilbert-base-cased-distilled-squad

6-question-answering.py

'''
Question answering from a given context.
'''

from transformers import pipeline

question_answerer = pipeline(task="question-answering", model="distilbert-base-cased-distilled-squad")
output = question_answerer(
    question="What work I do?",
    context="My name is Vineeth and I work as a Site Reliability Engineer at VMware in Bangalore, India",
)

print(output)


root@hf-2:/transformers-course# python3 6-question-answering.py
{'score': 0.9214025139808655, 'start': 35, 'end': 60, 'answer': 'Site Reliability Engineer'}
root@hf-2:/transformers-course#


translation

Model used: Helsinki-NLP/opus-mt-fr-en

8-translation.py

'''
Translate from fr to en.
'''

from transformers import pipeline

translator = pipeline("translation", model="Helsinki-NLP/opus-mt-fr-en")
output = translator("Ce cours est produit par Hugging Face.")

print(output)


root@hf-2:/transformers-course# python3 8-translation.py
[{'translation_text': 'This course is produced by Hugging Face.'}]
root@hf-2:/transformers-course#


More details and examples are given in my GitHub repo:

 

https://github.com/vineethac/huggingface/tree/main/1-examples



Hope it was useful. Cheers!


Thursday, February 1, 2024

Ollama - Part4 - Vision assistant using LLaVA

In this exercise we will interact with LLaVA which is an end-to-end trained large multimodal model and vision assistant. We will use the Ollama REST API to prompt the model using Python.

Full project in my GitHub

https://github.com/vineethac/Ollama/tree/main/ollama_vision_assistant


LLaVA, being a large multimodal model and vision assistant, can be utilized for various tasks. Here are a couple of use cases:

  • Image Description Generation

Input: Provide LLaVA with an image.
Use Case: LLaVA can generate descriptive text or captions for the content of the image. This is particularly useful for automating image cataloging or enhancing accessibility for visually impaired users.

  • Question-Answering on Text and Image

Input: Ask LLaVA a question related to a given text or show it an image.
Use Case: LLaVA can comprehend the context and provide relevant answers. For instance, you could ask about details in a picture or seek information from a paragraph, and LLaVA will attempt to answer accordingly.

These are just a few examples, and the versatility of LLaVA allows for exploration across a wide range of multimodal tasks and applications.

Sample interaction with LLaVA model


Image


Image credits: shutterstock

Prompt

python3 query_image.py --path=images/img1.jpg --prompt="describe the picture 
and what are the essentials that one need to carry generally while going these 
kind of places?"

Response
{
    "model": "llava",
    "created_at": "2024-01-23T17:41:27.771729767Z",
    "response": " The image shows a man riding his bicycle on a country road, surrounded by 
    beautiful scenery and mountains. He appears to be enjoying the ride as he navigates 
    through the countryside. \n\nWhile cycling in such environments, an essential item one 
    would need to carry is a water bottle or hydration pack, to ensure they stay well-hydrated 
    during the journey. In addition, it's important to have a map or GPS device to navigate 
    through potentially less familiar routes and avoid getting lost. Other useful items for 
    cyclists may include a multi-tool, first aid kit, bike lock, snacks, spare clothes, 
    and a small portable camping stove if planning an overnight stay in the wilderness.",

Hope it was useful. Cheers!

Friday, January 26, 2024

Ollama - Part3 - Web UI for Ollama to interact with LLMs

In the previous blog posts, we covered the deployment of Ollama on Kubernetes cluster and demonstrated how to prompt the Language Models (LLMs) using LangChain and Python. Now we will delve into deploying a web user interface (UI) for Ollama on a Kubernetes cluster. This will provide a ChatGPT like experience when engaging with the LLMs.

Full project in my GitHub

https://github.com/vineethac/Ollama/tree/main/ollama_webui


The above referenced GitHub repository details all the necessary steps required to deploy the Ollama web UI. The Following diagram outlines the various components and services that interact with each other as part of this entire system:


For detailed information on deploying Prometheus, Grafana, and Loki on a Kubernetes cluster, please refer this blog post.

A sample interaction with the mistral model using the web UI is given below.


Hope it was useful. Cheers!

Thursday, January 25, 2024

Ollama - Part2 - Prompt Large Language Models (LLMs) using Ollama, LangChain and Python


In this exercise we will learn to interact with the LLMs using Ollama, LangChain, and Python.

Full project in my GitHub

https://github.com/vineethac/Ollama/tree/main/ollama_langchain


Import necessary modules from LangChain library and Python's argparse module

from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.llms import Ollama
import argparse

Argument parsing

parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default="llama2")

args = parser.parse_args()
model = args.model

Initialize Ollama

llm = Ollama(
        model=model, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]), base_url="http://ollama:11434"
)

Interactive loop

while True:
    print(f"Model: {model}")
    prompt = input("Ask me anything: ")

    if prompt=="/bye":
        break

    llm(prompt)
    print("\n \n")


In summary, this script sets up a simple command-line interface for interacting with the Ollama language model. It takes user prompts, sends them to the Ollama model for processing, and prints the model's responses. The loop continues until the user enters "/bye" to exit.

Hope it was useful. Cheers!

Monday, January 15, 2024

Ollama - Part1 - Deploy Ollama on Kubernetes

Docker published GenAI stack around Oct 2023 which consists of large language models (LLMs) from Ollama, vector and graph databases from Neo4j, and the LangChain framework. These utilities can help developers with the resources they need to kick-start creating new applications using generative AI. Ollama can be used to deploy and run LLMs locally. In this exercise we will deploy Ollama to a Kubernetes cluster and prompt it.

In my case I am using a Tanzu Kubernetes Cluster (TKC) running on vSphere with Tanzu 7u3 platform powered by Dell PowerEdge R640 servers. The TKC nodes are using best-effort-2xlarge vmclass with 8 CPU and 64Gi Memory.  Note that I am running it on a regular Kubernetes cluster without GPU. If you have GPU, additional configuration steps might be required.



Hope it was useful. Cheers!

Saturday, December 30, 2023

GitOps using Argo CD - Part2 - Mini project

In the previous blog post, we discussed deploying Argo CD on a Kubernetes cluster and explored the fundamentals of application management. This time, we'll leverage Argo CD to deploy the applications from our Kubernetes mini project.

Full project in my GitHub

https://github.com/vineethac/Kubernetes/tree/main/gitops-argocd


Following are the different components of the project that will get deployed on to a Kubernetes cluster using the Argo CD application resource:
  1. Ingress controller
  2. Prometheus stack
  3. FastAPI web app
  4. FastAPI service monitor
  5. Loki stack


Deploy each of these components by applying the corresponding YAML manifest, following the outlined steps in the GitHub repository mentioned above. After the successful deployment of all components, you can observe them in the Argo CD web UI, as illustrated below.


Hope it was useful. Cheers!