Showing posts with label VCSA. Show all posts
Showing posts with label VCSA. Show all posts

Friday, September 22, 2023

Configure syslog forwarding in vCenter servers using Python

As a system administrator, it's essential to ensure that your vCenter servers are properly configured to collect and forward system logs to a central location for monitoring and analysis. In this blog, we'll explore how to configure syslog forwarding in vCenter servers using Python.

You can access the Python script from my GitHub repository: 
https://github.com/vineethac/VMware/tree/main/vCenter/syslog_forwarding



In this blog, we've demonstrated how to get, test, and set syslog forwarding configuration in vCenter servers using Python. By following these steps, you can ensure that your vCenter servers are properly configured to collect and forward system logs to a central location for monitoring and analysis. Remember to replace the placeholders in the config file with your actual vCenter server names, syslog server IP address or hostname, port, and protocol.

Hope it was useful. Cheers!

Monday, March 29, 2021

vSphere with Tanzu using NSX-T - Part6 - Create tag, VM storage policy, and content library

In the previous posts we discussed the following: 

Part1: Prerequisites

Part2: Configure NSX-T

Part3: Edge Cluster

Part4: Tier-0 Gateway and BGP peering

Part5: Tier-1 Gateway and Segments


At this stage, we are almost done with the networking/ NSX-T related prerequisites. Before getting into Workload Management configuration we need to create a tag, assign the tag to the datastore, create a VM storage policy, and content library.

Create and assign a tag

  • Select the datastore. Click Assign.
  • Add Tag.
  • Provide a name, and click on create new category.
  • Provide a category name and click create.
  • Click create.
  • Now a tag is created and you can assign it to the vSAN datastore.
  • Select the tag and click assign.

Create VM storage policy with tag based placement

  • Provide a name and click next.
  • Select tag based placement and click next.
  • Click the drop-down for tag category, select "Tanzu", and then click browse tags, select "Tanzu" and click next.
  • Select the compatible datastore, vSAN in this case, and click next.
  • Click finish.
  • You can now see the newly created VM storage policy.

Create content library

  • Click create.
  • Provide details and next.
  • Provide subscription URL and next.
  • Accept the SSL thumbprint by clicking yes. Select the vSAN datastore as the storage location for library contents, and next.
  • Click finish.
  • You can now see the newly created content library.

All the prerequisites are done now. The next step is to configure workload management which will be covered in the next part. Hope it was useful. Cheers!

Friday, October 23, 2020

VMware PowerCLI 101 - part8 - Working with vSAN

This article explains how to work with vSAN resources using PowerCLI. 

Note I am using the following versions:
PowerShell: 5.1.14393.3866
VMware PowerCLI: 12.1.0.17009493


Connect to vCenter:
Connect-VIServer <IP of vCenter server>

List all vSAN get cmdlets:
Get-Command Get-Vsan*


vSAN runtime info:
$c = Get-Cluster Cluster01
Get-VsanRuntimeInfo -Cluster $c


vSAN space usage:
Get-VsanSpaceUsage


vSAN cluster configuration:
Get-VsanClusterConfiguration


vSAN disk details:
Get-VsanDisk


View all properties of a disk:
(Get-VsanDisk)[31] | select *


View disk vendor, model, firmware revision, physical location, operational state:
(Get-VsanDisk)[31].ExtensionData


 vSAN disk group details:
Get-VsanDiskGroup


Get all properties of a disk group:

Tuesday, June 23, 2020

Tanzu Kubernetes Grid (TKG) on vSphere 6.7 U3 - Part1


TKG is an enterprise-ready Kubernetes runtime which provides a consistent, upstream-compatible implementation of Kubernetes, that is tested, signed, and supported by VMware. 

Installation

I am using a 3 node vSAN cluster running vSphere 6.7 U3 to deploy TKG. The first step is to prepare a VM that will be used to kickstart the deployment process. Here I am using a CentOS 7 VM with desktop UI. Download the TKG CLI, TKG Kubernetes OVA, and Load Balancer OVA from the following link:


I am using the following versions:
  • VMware Tanzu Kubernetes Grid CLI 1.1 Linux
  • VMware Tanzu Kubernetes Grid 1.1.0 Kubernetes v1.18.2 OVA
  • VMware Tanzu Kubernetes Grid 1.1 Load Balancer OVA

Unzip and install TKG CLI on the CentOS VM.

Wednesday, September 18, 2019

vRealize Operations Manager 7.5 - Part7 - vSAN monitoring and troubleshooting

In this article, I will walk you through how to use vROps for vSAN monitoring and performance troubleshooting. It is always recommended to follow a systematic and established approach to troubleshoot problems. Before we start here is a link to one of my article which explains the scientific method of troubleshooting

Given below are some very useful content from VMware that talks about vSAN performance troubleshooting.

Performance Troubleshooting – Understanding the Different Levels of vSAN Performance Metrics
Performance Troubleshooting – Which vSAN Performance Metrics Should be Looked at First?
Troubleshooting vSAN performance

Performance is all relative and sometimes performance issues can be because of the wrong perception. So it is always good to validate it with actual numbers. Compare with a benchmark value or verify all relevant metrics before and after the issue has been reported. Now assume there is a storage issue in the environment. Given below is a systematic order to approach the problem, identify it correctly, isolate it and finally take necessary steps to resolve it. 

vSAN performance troubleshooting approach
  1. Infrastructure: Perform vSAN cluster health check
  2. Virtual machine level: Is there a storage issue observed at the application level?
  3. Virtual machine level: Is there a storage issue per vmdk level?
    1. Latency (vmdk)
    2. IOPS (vmdk)
  4. Cluster level: Look at operations overview at the cluster level
    1. Latency
    2. IOPS
  5. Host level: Identify the IO type that has a performance issue
    1. Read IO
    2. Write IO
  6. Host level: Collect/ analyze metrics of the storage objects
    1. Storage adapter (vmhba)
    2. Disk groups
    3. Cache disk
    4. Capacity disk 
  7. Host level: Collect/ analyze metrics of the network objects
    1. Physical adapter (vmnic)
    2. vSAN network (vmk)
At this point, you have a clearly defined workflow in identifying and resolving the issue. So let's have a look at the various vROps dashboards that provides you end to end visibility of your stack and helps you easily identify and isolate the issue. If there is a problem or abnormality or unusual performance behavior in your vSAN environment, vROps will notify that with alerts based on various metric values it monitors using its inbuilt intelligence and analytics capabilities. Alert generation is based on symptom and alert definitions and this will finally affect the health, risk or efficiency badge of the respective object. Status of the badges, symptoms, alerts, recommendations, historical performance data and time stamps will be very useful in the process of troubleshooting and quickly finding the actual problem.

Infrastructure: Perform vSAN cluster health check

As a starting point, you can make use of integrated health checks from vCenter to verify your vSAN infrastructure.


To understand in-depth about vSAN health checks refer: https://vxplanet.com/2019/01/30/vsan-health-checks-explained-part-1/

Now to get a high-level overview, let's have a look into the health, risk and efficiency badges of vSAN cluster in vROps. Please refer to this blog article from VMware to get a detailed understanding of badges.

Health badge


Risk badge


Alerts


Virtual machine level: Is there a storage issue observed at the application level?

You can make use of application aware operations feature in vROps 7.5 to get full stack visibility. Given below are the list of applications that can be currently monitored using vROps 7.5.


Reference to application aware monitoring: https://blogs.vmware.com/management/2019/05/application-aware-operations-with-vrealize-operations-7-5.html


If your application is not supported or if application aware monitoring is not configured, then you can go with native application performance counters/ methods to identify whether the application itself is observing/ affected by storage latency, low IOPS, etc.

Virtual machine level: Is there a storage issue per vmdk level?

As a first step, you can use the "Troubleshoot a VM" dashboard to understand and track resource usage of a virtual machine.

Troubleshoot a VM - a

Troubleshoot a VM - b

Select the VM object to get more details. Below screenshot shows metrics related to a virtual disk.


Cluster level: Look at operations overview at the cluster level

vSAN operations overview dashboard


Troubleshooting vSAN dashboard

Troubleshooting vSAN - a

Troubleshooting vSAN - b

Troubleshooting vSAN - c

Host level: Identify the IO type that has a performance issue

Host level storage metrics


Host level: Collect/ analyze metrics of the storage objects

Metrics related to a disk group


Read cache and write buffer metrics of a disk group


Performance metrics of a capacity disk


Host level: Collect/ analyze metrics of the network objects

Metrics related to vmnic (physical NIC) and vSAN vmk


Metrics related to network objects will help to determine whether the performance issue is due to resource contention, network misconfiguration, hardware issue, etc.  


References: