Showing posts with label troubleshooting. Show all posts
Showing posts with label troubleshooting. Show all posts

Wednesday, June 26, 2024

vSphere with Tanzu using NSX-T - Part33 - Troubleshooting intermittent connection timeouts to apiserver and workloads

In the realm of managing Tanzu Kubernetes clusters (TKCs), we have encountered several challenges that hindered the smooth functioning of our applications. In this blog post, we will discuss three such cases and the workarounds we employed to resolve them.


Case 1: TKC Control Plane Node Connectivity Issues


Symptoms:
  • TKC apiserver connection timeouts when attempting to connect using the kubeconfig.
  • Traffic was not flowing to two of the control plane nodes.
  • NSX-T web UI LB VS stats indicated this issue.


Case 2: TKC Worker Node Connectivity Issues


Symptoms:
  • Workload (example: PostgreSQL cluster) connection timeouts.
  • Traffic was not flowing to two of the worker nodes in the TKC.
  • NSX-T web UI LB VS stats indicated this issue.


Case 3: Load Balancer Connectivity Issues


Symptoms:
  • Connection timeouts when attempting to connect to a PostgreSQL workload through the load balancer VS IP.
  • This issue was observed only when creating new services of type LoadBalancer in the TKC.
  • We noticed datapath mempool usage for the edge nodes was above the threshold value.


Resolution/ work around

  • Find the T1 router that is attached to the TKC which has connectivity issues. 
  • In an Active - Standby HA configuration, you will see that there will be one Edge node that will be Active and another one in Standby status. 
  • First place the Standby Edge node in NSX MM, reboot it, and then exit it from NSX MM. 
  • Now, place the Active Edge node in NSX MM, there will be a slight network disruption during this failover, once it is in NSX MM, reboot it, and then exit NSX MM. 
  • This should resolved the issue.


In conclusion, these cases illustrate the importance of verifying NSX-T components when managing Tanzu Kubernetes clusters. By identifying the root cause of the issues and employing effective workarounds, we were able to restore functionality and maintain the health of our applications. Stay tuned for more insights and best practices in managing Kubernetes clusters.

Hope it was useful. Cheers!

Saturday, June 22, 2024

vSphere with Tanzu using NSX-T - Part31 - Troubleshooting inaccessible TKC with expired control plane certs

In the course of managing multiple Tanzu Kubernetes Clusters (TKC), I encountered an unexpected issue: the control plane certificates had expired, preventing us from accessing the cluster using the kubeconfig file. To make matters worse, we were unable to SSH into the TKC control plane Virtual Machines (VMs) due to the vmware-system-user password expiring in accordance with STIG Hardening.

The recommended workaround for updating the vmware-system-user password expiry involves applying a specific daemonset on Guest Clusters. However, this approach requires access to the TKC using its admin kubeconfig file, which was unavailable due to the expired certificates.

Warning: In case of critical production issues that affect the accessibility of your Tanzu Kubernetes Cluster (TKC), it is strongly advised to submit a product support request to our team for assistance. This will ensure that you receive expert guidance and a timely resolution to help minimize the impact on your environment.

To resolve this issue, I followed an alternative workaround: I reset the root password of the TKC control plane VMs through the vCenter VM console, as outlined in this knowledge base article. Once the root password was reset, I was able to log directly into the TKC control plane VM using the VM console.




After gaining access to the TKC control plane VM, I proceeded to renew the control plane certificates using kubeadm, as detailed in this blog post. It's essential to apply this process to all control plane nodes in your cluster to ensure proper functionality.

root [ /etc/kubernetes ]# kubeadm certs check-expiration

root [ /etc/kubernetes ]# kubeadm certs renew all
[renew] Reading configuration from the cluster...
[renew] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
[renew] Error reading configuration from the Cluster. Falling back to default configuration

certificate embedded in the kubeconfig file for the admin to use and for kubeadm itself renewed
certificate for serving the Kubernetes API renewed
certificate the apiserver uses to access etcd renewed
certificate for the API server to connect to kubelet renewed
certificate embedded in the kubeconfig file for the controller manager to use renewed
certificate for liveness probes to healthcheck etcd renewed
certificate for etcd nodes to communicate with each other renewed
certificate for serving etcd renewed
certificate for the front proxy client renewed
certificate embedded in the kubeconfig file for the scheduler manager to use renewed

Done renewing certificates. You must restart the kube-apiserver, kube-controller-manager, kube-scheduler and etcd, so that they can use the new certificates.

Although this workaround required some additional steps, it ultimately allowed us to regain access to our Tanzu Kubernetes Cluster and maintain its security and functionality.

Hope it was useful. Cheers!

Saturday, May 25, 2024

vSphere with Tanzu using NSX-T - Part30 - Troubleshooting inaccessible TKC with server pool members missing in the LB VS

Encountering issues with connectivity to your TKC apiserver/ control plane can be frustrating. One common problem we've seen is the kubeconfig failing to connect, often due to missing server pool members in the load balancer's virtual server (LB VS).

The Issue

The LB VS, which operates on port 6443, should have the control plane VMs listed as its member servers. When these members are missing, connectivity problems arise, disrupting your access to the TKC apiserver.

Troubleshooting steps

  1. Access the TKC: Use the kubeconfig to access the TKC.
    ❯ KUBECONFIG=tkc.kubeconfig kubectl get node
    Unable to connect to the server: dial tcp 10.191.88.4:6443: i/o timeout
    
    
  2. Check the Load Balancer: In NSX-T, verify the status of the corresponding load balancer (LB). It may display a green status indicating success.
  3. Inspect Virtual Servers: Check the virtual servers in the LB, particularly on port 6443. They might show as down.
  4. Examine Server Pool Members: Look into the server pool members of the virtual server. You may find it empty.
  5. SSH to Control Plane Nodes: Attempt to SSH into the TKC control plane nodes.
  6. Run Diagnostic Commands: Execute diagnostic commands inside the control plane nodes to verify their status. The issue could be that the control plane VMs are in a hung state, and the container runtime is not running.
    vmware-system-user@tkc-infra-r68zc-jmq4j [ ~ ]$ sudo su
    root [ /home/vmware-system-user ]# crictl ps
    FATA[0002] failed to connect: failed to connect, make sure you are running as root and the runtime has been started: context deadline exceeded
    root [ /home/vmware-system-user ]#
    root [ /home/vmware-system-user ]# systemctl is-active containerd
    Failed to retrieve unit state: Failed to activate service 'org.freedesktop.systemd1': timed out (service_start_timeout=25000ms)
    root [ /home/vmware-system-user ]#
    root [ /home/vmware-system-user ]# systemctl status containerd
    WARNING: terminal is not fully functional
    -  (press RETURN)Failed to get properties: Failed to activate service 'org.freedesktop.systemd1'>
    lines 1-1/1 (END)lines 1-1/1 (END)
    
  7. Check VM Console: From vCenter, check the console of the control plane VMs. You might see specific errors indicating issues.
    EXT4-fs (sda3): Delayed block allocation failed for inode 266704 at logical offset 10515 with max blocks 2 with error 5
    EXT4-fs (sda3): This should not happen!! Data will be lost
    EXT4-fs error (device sda3) in ext4_writepages:2905: IO failure
    EXT4-fs error (device sda3) in ext4_reserve_inode_write:5947: Journal has aborted
    EXT4-fs error (device sda3) xxxxxx-xxx-xxxx: unable to read itable block
    EXT4-fs error (device sda3) in ext4_journal_check_start:61: Detected aborted journal
    systemd[1]: Caught <BUS>, dumped core as pid 24777.
    systemd[1]: Freezing execution.
    
  8. Restart Control Plane VMs: Restart the control plane VMs. Note that sometimes your admin credentials or administrator@vsphere.local credentials may not allow you to restart the TKC VMs. In such cases, decode the username and password from the relevant secret and use these credentials to connect to vCenter and restart the hung TKC VMs.
    ❯ kubectx wdc-01-vc17
    Switched to context "wdc-01-vc17".
    
    ❯ kg secret -A | grep wcp
    kube-system                                 wcp-authproxy-client-secret                                               kubernetes.io/tls                                  3      291d
    kube-system                                 wcp-authproxy-root-ca-secret                                              kubernetes.io/tls                                  3      291d
    kube-system                                 wcp-cluster-credentials                                                   Opaque                                             2      291d
    vmware-system-nsop                          wcp-nsop-sa-vc-auth                                                       Opaque                                             2      291d
    vmware-system-nsx                           wcp-cluster-credentials                                                   Opaque                                             2      291d
    vmware-system-vmop                          wcp-vmop-sa-vc-auth                                                       Opaque                                             2      291d
    
    ❯ kg secrets -n vmware-system-vmop wcp-vmop-sa-vc-auth
    NAME                  TYPE     DATA   AGE
    wcp-vmop-sa-vc-auth   Opaque   2      291d
    ❯ kg secrets -n vmware-system-vmop wcp-vmop-sa-vc-auth -oyaml
    apiVersion: v1
    data:
      password: aWAmbHUwPCpKe1Uxxxxxxxxxxxx=
      username: d2NwLXZtb3AtdXNlci1kb21haW4tYzEwMDYtMxxxxxxxxxxxxxxxxxxxxxxxxQHZzcGhlcmUubG9jYWw=
    kind: Secret
    metadata:
      creationTimestamp: "2022-10-24T08:32:26Z"
      name: wcp-vmop-sa-vc-auth
      namespace: vmware-system-vmop
      resourceVersion: "336557268"
      uid: dcbdac1b-18bb-438c-ba11-76ed4d6bef63
    type: Opaque
    
    
    ***Decrypt the username and password from the secret and use it to connect to the vCenter.
    ***Following is an example using PowerCLI:
    
    PS /Users/vineetha> get-vm gc-control-plane-f266h
    
    Name                 PowerState Num CPUs MemoryGB
    ----                 ---------- -------- --------
    gc-control-plane-f2… PoweredOn  2        4.000
    
    PS /Users/vineetha> get-vm gc-control-plane-f266h | Restart-VMGuest
    Restart-VMGuest: 08/04/2023 22:20:20	Restart-VMGuest		Operation "Restart VM guest" failed for VM "gc-control-plane-f266h" for the following reason: A general system error occurred: Invalid fault
    PS /Users/vineetha>
    PS /Users/vineetha> get-vm gc-control-plane-f266h | Restart-VM
    
    Confirm
    Are you sure you want to perform this action?
    Performing the operation "Restart-VM" on target "VM 'gc-control-plane-f266h'".
    [Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help (default is "Y"): Y
    
    Name                 PowerState Num CPUs MemoryGB
    ----                 ---------- -------- --------
    gc-control-plane-f2… PoweredOn  2        4.000
    
    PS /Users/vineetha>
    
  9. Verify System Pods and Connectivity: Once the control plane VMs are restarted, the system pods inside them will start, and the apiserver will become accessible using the kubeconfig. You should also see the previously missing server pool members reappear in the corresponding LB virtual server, and the virtual server on port 6443 will be up and show a success status.

Following these steps should help you resolve the connectivity issues with your TKC apiserver/control plane effectively.Ensuring that your load balancer's virtual server is correctly configured with the appropriate member servers is crucial for maintaining seamless access. This runbook aims to guide you through the process, helping you get your TKC apiserver back online swiftly.

Note: If required for critical production issues related to TKC accessibility I strongly recommend to raise a product support request.

Hope it was useful. Cheers!

Sunday, October 29, 2023

Kubernetes 101 - Part12 - Debug pod

When it comes to troubleshooting application connectivity and name resolution issues in Kubernetes, having the right tools at your disposal can make all the difference. One of the most common challenges is accessing essential utilities like ping, nslookup, dig, traceroute, and more. To simplify this process, we've created a container image that packs a range of these utilities, making it easy to quickly identify and resolve connectivity issues.

 

The Container Image: A Swiss Army Knife for Troubleshooting

This container image, designed specifically for Kubernetes troubleshooting, comes pre-installed with the following essential utilities:

  1. ping: A classic network diagnostic tool for testing connectivity.
  2. dig: A DNS lookup tool for resolving domain names to IP addresses.
  3. nslookup: A network troubleshooting tool for resolving hostnames to IP addresses.
  4. traceroute: A network diagnostic tool for tracing the path of packets across a network.
  5. curl: A command-line tool for transferring data to and from a web server using HTTP, HTTPS, SCP, SFTP, TFTP, and more.
  6. wget: A command-line tool for downloading files from the web.
  7. nc: A command-line tool for reading and writing data to a network socket.
  8. netstat: A command-line tool for displaying network connections, routing tables, and interface statistics.
  9. ifconfig: A command-line tool for configuring network interfaces.
  10. route: A command-line tool for displaying and modifying the IP routing table.
  11. host: A command-line tool for performing DNS lookups and resolving hostnames.
  12. arp: A command-line tool for displaying and modifying the ARP cache.
  13. iostat: A command-line tool for displaying disk I/O statistics.
  14. top: A command-line tool for displaying system resource usage.
  15. free: A command-line tool for displaying free memory and swap space.
  16. vmstat: A command-line tool for displaying virtual memory statistics.
  17. pmap: A command-line tool for displaying process memory maps.
  18. mpstat: A command-line tool for displaying multiprocessor statistics.
  19. python3: A programming language and interpreter.
  20. pip: A package installer for Python.

 

Run as a pod on Kubernetes

kubectl run debug --image=vineethac/debug -n default -- sleep infinity

 

Exec into the debug pod

kubectl exec -it debug -n default -- bash 
root@debug:/# ping 8.8.8.8 PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data. 64 bytes from 8.8.8.8: icmp_seq=1 ttl=46 time=49.3 ms 64 bytes from 8.8.8.8: icmp_seq=2 ttl=45 time=57.4 ms 64 bytes from 8.8.8.8: icmp_seq=3 ttl=46 time=49.4 ms ^C --- 8.8.8.8 ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 2003ms rtt min/avg/max/mdev = 49.334/52.030/57.404/3.799 ms root@debug:/#
root@debug:/# nslookup google.com Server: 10.96.0.10 Address: 10.96.0.10#53 Non-authoritative answer: Name: google.com Address: 142.250.72.206 Name: google.com Address: 2607:f8b0:4005:80c::200e root@debug:/# exit exit ❯

 

Reference

https://github.com/vineethac/Docker/tree/main/debug-image

By having these essential utilities at your fingertips, you'll be better equipped to quickly identify and resolve connectivity issues in your Kubernetes cluster, saving you time and reducing the complexity of troubleshooting.

Hope it was useful. Cheers!

Friday, June 9, 2023

vSphere with Tanzu using NSX-T - Part26 - Jumpbox kubectl plugin to SSH to TKC node

For troubleshooting TKC (Tanzu Kubernetes Cluster) you may need to ssh into the TKC nodes. For doing ssh, you will need to first create a jumpbox pod under the supervisor namespace and from there you can ssh to the TKC nodes.

Here is the manual procedure: https://docs.vmware.com/en/VMware-vSphere/7.0/vmware-vsphere-with-tanzu/GUID-587E2181-199A-422A-ABBC-0A9456A70074.html


Following kubectl plugin creats a jumpbox pod under a supervisor namespace. You can exec into this jumpbox pod to ssh into the TKC VMs.

kubectl-jumpbox

#!/bin/bash

Help()
{
   # Display Help
   echo "Description: This plugin creats a jumpbox pod under a supervisor namespace. You can exec into this jumpbox pod to ssh into the TKC VMs."
   echo "Usage: kubectl jumpbox SVNAMESPACE TKCNAME"
   echo "Example: k exec -it jumpbox-tkc1 -n svns1 -- /usr/bin/ssh vmware-system-user@VMIP"
}

# Get the options
while getopts ":h" option; do
   case $option in
      h) # display Help
         Help
         exit;;
     \?) # incorrect option
         echo "Error: Invalid option"
         exit;;
   esac
done

kubectl create -f - <<EOF
apiVersion: v1
kind: Pod
metadata:
  name: jumpbox-$2
  namespace: $1           #REPLACE
spec:
  containers:
  - image: "photon:3.0"
    name: jumpbox
    command: [ "/bin/bash", "-c", "--" ]
    args: [ "yum install -y openssh-server; mkdir /root/.ssh; cp /root/ssh/ssh-privatekey /root/.ssh/id_rsa; chmod 600 /root/.ssh/id_rsa; while true; do sleep 30; done;" ]
    volumeMounts:
      - mountPath: "/root/ssh"
        name: ssh-key
        readOnly: true
    resources:
      requests:
        memory: 2Gi
  
  volumes:
    - name: ssh-key
      secret:
        secretName: $2-ssh     #REPLACE YOUR-CLUSTER-NAME-ssh 

  
EOF

Usage

  • Place the plugin in the system executable path.
  • I placed it in $HOME/.krew/bin directory in my laptop.
  • Once you copied the plugin to the proper path, you can make it executable by: chmod 755 kubectl-jumpbox
  • After that you should be able to run the plugin as: kubectl jumpbox SUPERVISORNAMESPACE TKCNAME


 

Example

❯ kg tkc -n vineetha-dns1-test
NAME               CONTROL PLANE   WORKER   TKR NAME                           AGE    READY   TKR COMPATIBLE   UPDATES AVAILABLE
tkc                1               3        v1.21.6---vmware.1-tkg.1.b3d708a   213d   True    True             [1.22.9+vmware.1-tkg.1.cc71bc8]
tkc-using-cci-ui   1               1        v1.23.8---vmware.3-tkg.1           37d    True    True

❯ kg po -n vineetha-dns1-test
NAME         READY   STATUS    RESTARTS   AGE
nginx-test   1/1     Running   0          29d


❯ kubectl jumpbox vineetha-dns1-test tkc
pod/jumpbox-tkc created

❯ kg po -n vineetha-dns1-test
NAME          READY   STATUS    RESTARTS   AGE
jumpbox-tkc   0/1     Pending   0          8s
nginx-test    1/1     Running   0          29d

❯ kg po -n vineetha-dns1-test
NAME          READY   STATUS    RESTARTS   AGE
jumpbox-tkc   1/1     Running   0          21s
nginx-test    1/1     Running   0          29d

❯ k jumpbox -h
Description: This plugin creats a jumpbox pod under a supervisor namespace. You can exec into this jumpbox pod to ssh into the TKC VMs.
Usage: kubectl jumpbox SVNAMESPACE TKCNAME
Example: k exec -it jumpbox-tkc1 -n svns1 -- /usr/bin/ssh vmware-system-user@VMIP

❯ kg vm -n vineetha-dns1-test -o wide
NAME                                                              POWERSTATE   CLASS               IMAGE                                                       PRIMARY-IP      AGE
tkc-control-plane-8rwpk                                           poweredOn    best-effort-small   ob-18900476-photon-3-k8s-v1.21.6---vmware.1-tkg.1.b3d708a   172.29.0.7      133d
tkc-using-cci-ui-control-plane-z8fkt                              poweredOn    best-effort-small   ob-20953521-tkgs-ova-photon-3-v1.23.8---vmware.3-tkg.1      172.29.13.130   37d
tkc-using-cci-ui-tkg-cluster-nodepool-9nf6-n6nt5-b97c86fb45mvgj   poweredOn    best-effort-small   ob-20953521-tkgs-ova-photon-3-v1.23.8---vmware.3-tkg.1      172.29.13.131   37d
tkc-workers-zbrnv-6c98dd84f9-52gn6                                poweredOn    best-effort-small   ob-18900476-photon-3-k8s-v1.21.6---vmware.1-tkg.1.b3d708a   172.29.0.6      133d
tkc-workers-zbrnv-6c98dd84f9-d9mm7                                poweredOn    best-effort-small   ob-18900476-photon-3-k8s-v1.21.6---vmware.1-tkg.1.b3d708a   172.29.0.8      133d
tkc-workers-zbrnv-6c98dd84f9-kk2dg                                poweredOn    best-effort-small   ob-18900476-photon-3-k8s-v1.21.6---vmware.1-tkg.1.b3d708a   172.29.0.3      133d

❯ k exec -it jumpbox-tkc -n vineetha-dns1-test -- /usr/bin/ssh vmware-system-user@172.29.0.7
The authenticity of host '172.29.0.7 (172.29.0.7)' can't be established.
ECDSA key fingerprint is SHA256:B7ptmYm617lFzLErJm7G5IdT7y4SJYKhX/OenSgguv8.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '172.29.0.7' (ECDSA) to the list of known hosts.
Welcome to Photon 3.0 (\m) - Kernel \r (\l)
 13:06:06 up 133 days,  4:46,  0 users,  load average: 0.23, 0.33, 0.27

36 Security notice(s)
Run 'tdnf updateinfo info' to see the details.
vmware-system-user@tkc-control-plane-8rwpk [ ~ ]$ sudo su
root [ /home/vmware-system-user ]#
root [ /home/vmware-system-user ]#


Hope it was useful. Cheers!

Sunday, September 11, 2022

vSphere with Tanzu using NSX-T - Part19 - Troubleshooting TKC stuck at creating phase

This article provides basic troubleshooting steps for TKCs (Tanzu Kubernetes Cluster) stuck at creating phase.

Verify status of the TKC

  • Use the following commands to verify the TKC status.
kubectl get tkc -n <supervisor_namespace>
kubectl get tkc -n <supervisor_namespace> -o json
kubectl describe tkc <tkc_name> -n <supervisor_namespace>
kubectl get cluster-api -n <supervisor_namespace>
kubectl get vm,machine,wcpmachine -n <supervisor_namespace> 

Cluster health

  • Verify health of the supervisor cluster.
❯ kubectl get node
NAME STATUS ROLES AGE VERSION
4201a7b2667b0f3b021efcf7c9d1726b Ready control-plane,master 86d v1.22.6+vmware.wcp.2
4201bead67e21a8813415642267cd54a Ready control-plane,master 86d v1.22.6+vmware.wcp.2
4201e0e8e29b0ddb4b59d3165dd40941 Ready control-plane,master 86d v1.22.6+vmware.wcp.2
wxx-08-r02esx13.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx14.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx15.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx16.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx17.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx18.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx19.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx20.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx21.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx22.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx23.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46
wxx-08-r02esx24.xxxxxyyyy.com Ready agent 85d v1.22.6-sph-db56d46

❯ kubectl get --raw '/healthz?verbose'
[+]ping ok
[+]log ok
[+]etcd ok
[+]poststarthook/start-kube-apiserver-admission-initializer ok
[+]poststarthook/generic-apiserver-start-informers ok
[+]poststarthook/priority-and-fairness-config-consumer ok
[+]poststarthook/priority-and-fairness-filter ok
[+]poststarthook/start-apiextensions-informers ok
[+]poststarthook/start-apiextensions-controllers ok
[+]poststarthook/crd-informer-synced ok
[+]poststarthook/bootstrap-controller ok
[+]poststarthook/rbac/bootstrap-roles ok
[+]poststarthook/scheduling/bootstrap-system-priority-classes ok
[+]poststarthook/priority-and-fairness-config-producer ok
[+]poststarthook/start-cluster-authentication-info-controller ok
[+]poststarthook/aggregator-reload-proxy-client-cert ok
[+]poststarthook/start-kube-aggregator-informers ok
[+]poststarthook/apiservice-registration-controller ok
[+]poststarthook/apiservice-status-available-controller ok
[+]poststarthook/kube-apiserver-autoregistration ok
[+]autoregister-completion ok
[+]poststarthook/apiservice-openapi-controller ok
healthz check passed 

Terminating namespaces

  • Check for namespaces stuck at terminating phase. If there are any, properly clean them up by removing all child objects. 
  • You can use this kubectl get-all plugin to see all resources under a namespace.  Then clean them up properly. Mostly you need to set finalizers of remaining child resources to null. Following is a sample case where 2 PVCs where stuck at terminating and they were cleaned up by setting its finalizers to null.
❯ kg ns | grep Terminating
rgettam-gettam Terminating 226d

❯ k get-all -n rgettam-gettam
NAME NAMESPACE AGE
persistentvolumeclaim/58ef0d27-ba66-4f4e-b4d7-43bd1c4fb833-c8c0c111-e480-4df4-baf8-d140d0237e1d rgettam-gettam 86d
persistentvolumeclaim/58ef0d27-ba66-4f4e-b4d7-43bd1c4fb833-e5c99b7e-1397-4a9d-b38c-53a25cab6c3f rgettam-gettam 86d

❯ kg pvc -n rgettam-gettam
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
58ef0d27-ba66-4f4e-b4d7-43bd1c4fb833-c8c0c111-e480-4df4-baf8-d140d0237e1d Terminating pvc-bd4252fb-bfed-4ef3-ab5a-43718f9cbed5 8Gi RWO sxx-01-vcxx-wcp-mgmt 86d
58ef0d27-ba66-4f4e-b4d7-43bd1c4fb833-e5c99b7e-1397-4a9d-b38c-53a25cab6c3f Terminating pvc-8bc9daa1-21cf-4af2-973e-af28d66a7f5e 30Gi RWO sxx-01-vcxx-wcp-mgmt 86d

❯ kg pvc -n rgettam-gettam --no-headers | awk '{print $1}' | xargs -I{} kubectl patch -n rgettam-gettam pvc {} -p '{"metadata":{"finalizers": null}}'
  • You can also do kubectl get namespace <namespace> -oyaml and the status section will show if there are resources/ content to be deleted or any finalizers remaining.
  • Verify vmop-controller pod logs, and restart them if required.

IP_BLOCK_EXHAUSTED

  • Check CIDR usage of the supervisor cluster.
❯ kg clusternetworkinfos
NAME                                                AGE
domain-c1006-06046c54-c9e5-41aa-bc2c-52d72c05bce4   160d

❯ kg clusternetworkinfos domain-c1006-06046c54-c9e5-41aa-bc2c-52d72c05bce4 -o json | jq .usage
{
  "egressCIDRUsage": {
    "allocated": 33,
    "total": 1024
  },
  "ingressCIDRUsage": {
    "allocated": 42,
    "total": 1024
  },
  "subnetCIDRUsage": {
    "allocated": 832,
    "total": 1024
  }
} 
  • When the IP blocks of supervisor cluster are exhausted, you will find the following warning when you describe the TKC.
 Conditions:
    Last Transition Time:  2022-10-05T18:34:35Z
    Message:               Cannot realize subnet
    Reason:                ClusterNetworkProvisionFailed
    Severity:              Warning
    Status:                False
    Type:                  Ready 
  • Also when you check the namespace, you can see the following ncp error IP_BLOCK_EXHAUSTED.
 ❯ kg ns tsql-integration-test -oyaml
apiVersion: v1
kind: Namespace
metadata:
  annotations:
    calaxxxx.xxxyy.com/xxxrole-created: "1"
    ncp/error: IP_BLOCK_EXHAUSTED
    ncp/router_id: t1_d0a2af0f-8430-4250-9fcf-807a4afe51aa_rtr
    vmware-system-resource-pool: resgroup-307480
    vmware-system-vm-folder: group-v307481
  creationTimestamp: "2022-10-05T17:35:18Z"

Notes:

  • If the subnetCIDRUsage IP block is exhausted, you may need to remove some old/ unused namespaces, and that will release some IPs. If that is not possible, you may need to consider adding new subnet.
  • After removing the old/ unused namespaces, and even if IPs are available, sometimes the TKCs will be stuck at creating phase! In that case, check the ncp, vmop, and capw controller pods and you may need to restart them. What I observed is usually after restart of ncp pod, vmop-controller pods, and all pods under vmware-system-capw namespaces the VMs will start getting deployed and the TKC creation will progress and complete successfully.

Resource availability

  • Check whether there are enough resources available in the cluster.
LAST SEEN  TYPE   REASON       OBJECT                    MESSAGE
3m23s    Warning  UpdateFailure   virtualmachine/magna3-control-plane-9rhl4   The host does not have sufficient CPU resources to satisfy the reservation.
80s     Warning  ReconcileFailure  wcpmachine/magna3-control-plane-s5s9t-p2cxj  vm is not yet powered on: vmware-system-capw-controller-manager/WCPMachine//chakravartha-magna3/magna3/magna3-control-plane-s5s9t-p2cxj 

  • Check for resource limits applied to the namespace.

Check whether storage policy is assigned to the namespace

27m         Warning   ReconcileFailure               wcpmachine/gc-pool-0-cv8vz-5snbc          admission webhook "default.validating.virtualmachine.vmoperator.xxxyy.com" denied the request: StorageClass wdc-10-vc21c01-wcp-pod is not assigned to any ResourceQuotas in namespace mpereiramaia-demo2

  • In this case, the storage policy wasnt assigned to the ns. I assigned the storage policy wdc-10-vc21c01-wcp-pod to the respective namespace, and the TKC deployment was successful.

Check Content library can sync properly

  • Sometimes issues related to CL can cause TKCs to get stuck at creating phase! Check this blog post for more details.

KCP can't remediate

Message:               KCP can't remediate if current replicas are less or equal then 1
Reason:                WaitingForRemediation @ Machine/gc-control-plane-zpssc
Severity:              Warning
  • In this case, you can just edit the TKC spec, change the control plane vmclass to a different class and save. Once the deployment is complete and TKC is running, edit the TKC spec again and revert the vmclass that you modified earlier to its original class. This process will re-provision the control plane.

TKC VMs waiting for IP

  • In this case, take a look at NSXT and check whether all Edge nodes are healthy. If there are mismatch errors, resolve them.
  • You may also check ncp pod logs and restart ncp pod if required.

VirtualMachineClassBindingNotFound

Conditions:
    Last Transition Time:  2021-05-05T18:19:10Z
    Message:               1 of 2 completed
    Reason:                VirtualMachineClassBindingNotFound @ Machine/tkc-dev-control-plane-wxd57
    Severity:              Error
    Status:                False
    Message:               0/1 Control Plane Node(s) healthy. 0/2 Worker Node(s) healthy
Events:
  Normal  PhaseChanged  7m22s  vmware-system-tkg/vmware-system-tkg-controller-manager/tanzukubernetescluster-status-controller  cluster changes from creating phase to failed phase

  • This happens when the virtualmachineclassbindings are missing and can be resolved by adding all/ required VM Class to the Namespace using the vSphere Client. Following are the steps to add VM Classes to a namespace:
  • Log into vCenter web UI
  • From Hosts and Clusters > Select the namespace > Summary tab > VM Service tile > Click Manage VM Classes
  • Select all required VM Classes and click OK

Verify NSX-T objects

  • Issues at the NSX-T side can also cause the TKC to be stuck at creating phase. Following is a sample case and you can see these logs when you describe the TKC:
Message: 2 errors occurred:
* failed to configure DNS for /, Kind= namespace-test-01/gc: unable to reconcile kubeadm ConfigMap's CoreDNS info: unable to retrieve kubeadm Configmap from the guest cluster: configmaps "kubeadm-config" not found * failed to configure kube-proxy for /, Kind= namespace-test-01/gc: unable to retrieve kube-proxy daemonset from the guest cluster: daemonsets.apps "kube-proxy" not found
  • In this case, these were some issues with the virtual servers in loadbalancer. Some stale entries of virtual servers were still present and their IP didn't get removed properly and it was causing some intermittent connectivity issues to some of the other services of type loadbalancer. And, new TKC deployment within that affected namespace also gets stuck due to this. In our case we deleted the affected namespace, and recreated it, that cleaned up all those virtual server state entries and the load balancer, and new TKC deployments were successful. So it will be worth to check on the health and staus of NSX-T objects in case you have TKC deployment issues.

Check for broken TKCs in the cluster

  • Sometimes the TKC deployments are very slow and takes more than 30 minutes. In this case, you may notice that the first control plane VM will get deployed in like 30-45 minutes after the TKC creation has started. Look for vmop controller logs. Following is sample log:
❯ kail -n vmware-system-vmop
vmware-system-vmop/vmware-system-vmop-controller-manager-55459cb46b-2psrk[manager]: E1027 11:49:44.725620       1 readiness_worker.go:111] readiness-probe "msg"="readiness probe fails" "error"="dial tcp 172.29.9.212:6443: connect: connection refused" "vmName"="ciroscosta-cartographer/kontinue-control-plane-svlk4" "result"=-1

vmware-system-vmop/vmware-system-vmop-controller-manager-55459cb46b-2psrk[manager]: E1027 11:49:49.888653       1 readiness_worker.go:111] readiness-probe "msg"="readiness probe fails" "error"="dial tcp 172.29.2.66:6443: connect: connection refused" "vmName"="whaozhe-platform/gc-control-plane-mf4p5" "result"=-1

  • In the above case, two of the TKCs were broken/ stuck at updating phase and we were unable to connect to its control plane.
ciroscosta-cartographer    kontinue    updating       2021-10-29T18:47:46Z   v1.20.9+vmware.1-tkg.1.a4cee5b    1     2
whaozhe-platform           gc          updating       2022-01-27T03:59:31Z   v1.20.12+vmware.1-tkg.1.b9a42f3   1     10
  • After removing the namespaces with broken TKCs, new deployments were completing succesfully. 

Restart system pods

  • Sometimes restart of some of the system controller pods resoves the issue. I usually delete all the pods of the following namespaces and they will get restarted in a few seconds.
k delete pod --all --namespace=vmware-system-vmop
k delete pod --all --namespace=vmware-system-capw
k delete pod --all --namespace=vmware-system-tkg
k delete pod --all --namespace=vmware-system-csi
k delete pod --all --namespace=vmware-system-nsx

Hope this was useful. Cheers!

Saturday, August 13, 2022

vSphere with Tanzu using NSX-T - Part18 - Troubleshooting vSphere pods with ProviderFailed status

In this article, we will take a look at fixing vSphere pods with ProviderFailed status. Following is an example:

svc-opa-gatekeeper-domain-c61                 gatekeeper-controller-manager-5ccbc7fd79-5gn2n                    0/1     ProviderFailed     0          2d14h
svc-opa-gatekeeper-domain-c61 gatekeeper-controller-manager-5ccbc7fd79-5jtvj 0/1 ProviderFailed 0 2d13h
svc-opa-gatekeeper-domain-c61 gatekeeper-controller-manager-5ccbc7fd79-5whtt 0/1 ProviderFailed 0 2d14h
svc-opa-gatekeeper-domain-c61 gatekeeper-controller-manager-5ccbc7fd79-6p2zv 0/1 ProviderFailed 0 2d13h
svc-opa-gatekeeper-domain-c61 gatekeeper-controller-manager-5ccbc7fd79-7r92p 0/1 ProviderFailed 0 2d14h
When describing the pod, you can see the message "Unable to find backing for logical switch".

❯ kd po gatekeeper-controller-manager-5ccbc7fd79-5gn2n -n svc-opa-gatekeeper-domain-c61
Name: gatekeeper-controller-manager-5ccbc7fd79-5gn2n
Namespace: svc-opa-gatekeeper-domain-c61
Priority: 2000000000
Priority Class Name: system-cluster-critical
Node: esx-1.sddc-35-82-xxxxx.xxxxxxx.com/
Labels: control-plane=controller-manager
gatekeeper.sh/operation=webhook
gatekeeper.sh/system=yes
pod-template-hash=5ccbc7fd79
Annotations: attachment_id: 668b681b-fef6-43e5-8009-5ac8deb6da11
kubernetes.io/psp: wcp-default-psp
mac: 04:50:56:00:08:1e
vlan: None
vmware-system-ephemeral-disk-uuid: 6000C297-d1ba-ce8c-97ba-683a3c8f5321
vmware-system-image-references: {"manager":"gatekeeper-111fd0f684141bdad12c811b4f954ae3d60a6c27-v52049"}
vmware-system-vm-moid: vm-89777:750f38c6-3b0e-41b7-a94f-4d4aef08e19b
vmware-system-vm-uuid: 500c9c37-7055-1708-92d4-8ffdf932c8f9
Status: Failed
Reason: ProviderFailed
Message: Unable to find backing for logical switch 03f0dcd4-a5d9-431e-ae9e-d796ddca0131: timed out waiting for the condition Unable to find backing for logical switch: 03f0dcd4-a5d9-431e-ae9e-d796ddca0131
IP:
IPs: <none>
A workaround for this is to restart the spherelet service on the ESXi host where you see this issue. If there are multiple ESXi nodes having same issue, you could consider restarting the spherelet service on all ESXi worker nodes. In a production setup you may want to consider placing the ESXi in maintenance mode before restarting the spherelet service. In my case, we usually restart the spherelet service directly without placing the ESXi in MM. Following is the PowerCLI way to check/ restart spherelet service on ESXi worker nodes:
 

> Connect-VIServer wdc-10-vc21

> Get-VMHost | Get-VMHostService | where {$_.Key -eq "spherelet"} | select VMHost,Key,Running | ft

VMHost Key Running
------ --- -------
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True
wdc-10-r0xxxxxxxxxxxxxxxxxxxx spherelet True

> $sphereletservice = Get-VMHost wdc-10-r0xxxxxxxxxxxxxxxxxxxx | Get-VMHostService | where {$_.Key -eq "spherelet"}
> Stop-VMHostService -HostService $sphereletservice

Perform operation?
Perform operation Stop host service. on spherelet?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"): Y

Key Label Policy Running Required
--- ----- ------ ------- --------
spherelet spherelet on False False

> Get-VMHost wdc-10-r0xxxxxxxxxxxxxxxxxxxx | Get-VMHostService | where {$_.Key -eq "spherelet"}

Key Label Policy Running Required
--- ----- ------ ------- --------
spherelet spherelet on False False

> Start-VMHostService -HostService $sphereletservice

Key Label Policy Running Required
--- ----- ------ ------- --------
spherelet spherelet on True False

To restart spherelet service on all ESXi worker nodes of a cluster:
> Get-Cluster

Name HAEnabled HAFailover DrsEnabled DrsAutomationLevel
Level
---- --------- ---------- ---------- ------------------
wdc-10-vcxxc01 True 1 True FullyAutomated

> Get-Cluster -Name wdc-10-vcxxc01 | Get-VMHost | foreach { Restart-VMHostService -HostService ($_ | Get-VMHostService | where {$_.Key -eq "spherelet"}) }

After restarting the spherelet service, new pods will come up fine and be in Running status. But you may need to clean up all those pods with ProviderFailed status using kubectl. 
kubectl get pods -A | grep ProviderFailed | awk '{print $2 " --namespace=" $1}' | xargs kubectl delete pod

Hope it was useful. Cheers!

Friday, August 28, 2020

Get insight into a Linux machine using Cockpit

Cockpit is an interactive Linux server admin interface. You can use it to monitor/ manage a Linux node through a web browser.


Install Cockpit on the Linux machine


yum install cockpit -y

systemctl start cockpit

systemctl enable --now cockpit.socket

Friday, February 21, 2020

VMware PowerCLI 101 - part7 - Working with vROps

This article explains how to work with vROps resources using PowerCLI. The following diagram shows the relationship between adapters, resource kinds, and resources. There can be multiple adapters installed on the vROps instance. Each adapter kind will have multiple resource kinds and each resource kind will have multiple resources. And each resource will have its own badges and badge scores.


Note I am using the following versions:
PowerShell: 5.1.14393.3383
VMware PowerCLI: 11.3.0.13990089
vROps: 7.0

Connect to vROps:
Connect-OMServer <IP of vROps>

Get the list of all installed adapters:
Get-OMResource | select AdapterKind -Unique


Get all resource kinds of a specific adapter:
Get-OMResource -AdapterKind VMWARE | select ResourceKind -Unique


Get the list of resources of a specific resource kind:
Get-OMResource -ResourceKind Datacenter


Another example:
Get-OMResource -ResourceKind ClusterComputeResource


Get details of a specific resource:
Get-OMResource -Name Cluster01 | select *



Get badge details of a selected resource:
(Get-OMResource -Name Cluster01).ExtensionData.Badges


List all resources of an adapter kind where health is not green:
Get-OMResource -AdapterKind VMWARE | select AdapterKind,ResourceKind,Name,Health,State,Status | where health -ne Green | ft



Get the list all objects of an adapter kind that have collection issues:
Get-OMResource -AdapterKind VMWARE | select AdapterKind,ResourceKind,Name,Health,State,Status | where {($_.Status -ne "DataReceiving") -or ($_.State -ne "Started")} | ft


Get the list of all active critical alerts from a specific adapter type:
Get-OMResource -AdapterKind VMWARE | Get-OMAlert -Criticality Critical -Status Active


Hope it was helpful. Cheers!

Related posts

VMware PowerCLI 101 Blog Series